Single-cell atomic quantum memory for light
نویسندگان
چکیده
منابع مشابه
Shaping quantum pulses of light via coherent atomic memory.
We describe proof-of-principle experiments demonstrating a novel approach for generating pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. The approach is based on preparation of an atomic ensemble in a state with a desired number of atomic spin excitations, which is later converted into a photon pulse. Spatiotemporal control over the pulses is o...
متن کاملAnalysis of Quantum Light Memory in Atomic Systems
We extend the theory to describe the quantum light memory in Λ type atoms with considering bc γ (lower levels coherency decay rate) and detuning for the probe and the control fields. We obtain that with considering these parameters, group velocity of the probe pulse does not tend to zero by turning off the control field. We show that there are considerable decay for the probe pulse and the stor...
متن کاملQuantum memory for squeezed light.
We produce a 600-ns pulse of 1.86-dB squeezed vacuum at 795 nm in an optical parametric amplifier and store it in a rubidium vapor cell for 1 mus using electromagnetically induced transparency. The recovered pulse, analyzed using time-domain homodyne tomography, exhibits up to 0.21+/-0.04 dB of squeezing. We identify the factors leading to the degradation of squeezing and investigate the phase ...
متن کاملAtomic Quantum Memory for Photon Polarization
Using an ensemble of ultracold Cesium atoms in an optical cavity we demonstrate the efficient storage and retrieval of quantum information in the form of single photons. We use a photon that has scattered into the cavity mode to herald a successful creation of a collective excitation of Cesium atoms and hence our ability to retrieve a photon from the stored excitation at a later time. Post-sele...
متن کاملQuantum cloning of a coherent light state into an atomic quantum memory.
A scheme for the optimal Gaussian cloning of coherent light states at the interface between light and atoms is proposed. The distinct feature of this proposal is that the clones are stored in an atomic quantum memory, which is important for applications in quantum communication. The atomic quantum cloning machine requires only a single passage of the light pulse through the atomic ensembles fol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2006
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.74.043809